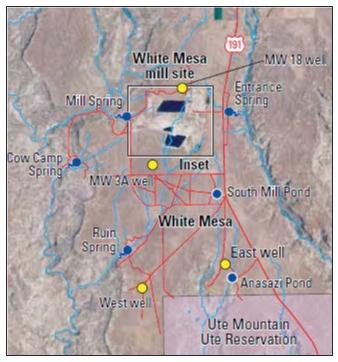
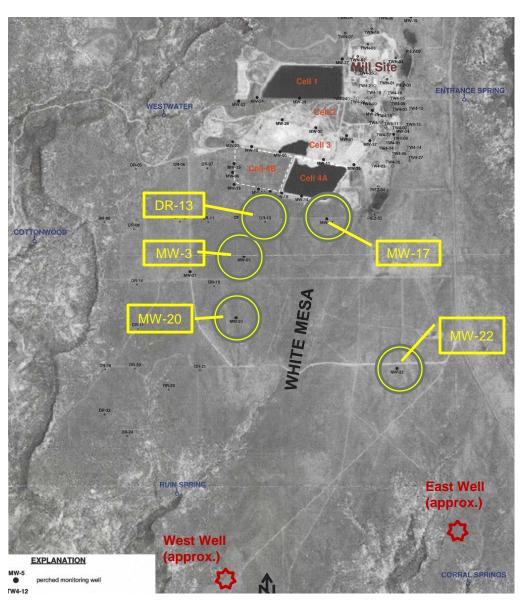
USGS REPORT: WHITE MESA URANIUM MILL

Utah Division of Radiation Control Public Presentation, Blanding Utah July 9, 2012

USGS Scientific Information Report, SIR-2011-5231


9 Recommendations Made

- DRC Agrees: Nos. 1, 2, 3, 4, 5, 7, and 9
- DRC Disagrees: No. 6
- DRC Agrees and Disagrees: No. 8


DRC Disagrees

- <u>USGS No. 6</u>:
 - Installation of new monitoring well(s)
 - Upgradient of East and West wells
 - ➤ Tribe installed on BLM land
 - Early warning

DUSA Monitoring Wells to South

USGS SIR, Fig. 19

DUSA 1st Qtr, 2012 GW Report, Fig. A-1

DRC Agrees and Disagrees

- USGS No. 8
 - Monitoring programs at DUSA should add:
 - 1. Uranium isotopes

```
■ 238U DRC agrees,

■ 235U see response to

USGS No. 2 (below)
```

- 2. δ ³⁴S (ratio of ³⁴S to ³²S)
- 3. $\delta^{18}O$ (ratio of ^{18}O to ^{16}O)
- 4. δ Deuterium or δ ²H (ratio of ²H to ¹H)

DRC disagrees

DRC Agrees and Disagrees


• USGS No. 8 - continued

DRC Disagrees because:

- Isotopic analysis
 - Few, if any, standardized methods in Environmental Industry
 - Few laboratories in USA (largely universities)
- o Mixed Signals: $δ^{34}$ S, $δ^{18}$ O, and $δ^{2}$ H
 - DUSA Northwest Wildlife Pond (NWP):
 - Fed by Recapture Reservoir
 - Leaks to Shallow Aquifer (groundwater mound in mill area)
 - NWP δ³⁴S Signal: same as tailings wastewater (U. of Utah)
 - 3 possible transfer mechanisms
 - Ore storage pad runoff discharge into NWP
 - Air deposition tailings aerosols
 - Sulfuric acid emissions mill stacks

DRC Agrees and Disagrees

• USGS No. 8 – continued

DUSA 1st Qtr, 2012 GW Report, Fig. H-1

DRC Agrees

- USGS No. 1
 - 1. Quarterly monitoring of springs and wells should continue
 - Mill Spring (aka Westwater Spring)
 - Entrance Spring
 - Cow Camp Spring (aka Cottonwood Spring)
 - East and West Wells

- 1. Agree for Mill, Entrance, and Cow Camp Springs
 - Caution Mill Spring flow = seasonal (no flow in dry years)
- 2. Disagree for East and West Wells -
 - Other DUSA wells are: Upgradient
 Closer to tailings cells

DRC Agrees

- USGS No. 1 continued
 - 2. Monitor: Field Parameters

Major and Trace Elements

- 1. Some technical differences in field analysis
 - USGS field tests: HCO3, CO3, dissolved Fe, dissolved S₂
 - None = State Ground Water Quality Standards
 - No change in DUSA field parameters expected
- 2. East and West Wells
 - Tribe is free to sample / analyze for their purposes
- 3. Major and Trace Elements
 - Most USGS analytes in groundwater, already tested at DUSA

DRC Agrees

- USGS No. 2
 - 1. Continued monitoring at Entrance Spring needed
 - Due to elevated Uranium (U) concentrations
 - 2. Suggested groundwater tests for: U isotopes

 δ ³⁴S, δ ¹⁸O, and δ ²H

- 1. Agree for U isotopes
 Uranium Activity Ratio (UAR)
 - UAR = ²³⁴U activity
 ²³⁸U activity
- 2. USGS Research @ Other U mills: Canon City, CO & Fry Canyon, UT
 - U Tailings wastewater / raffinate: UAR ~ 1.0
 - Natural Shallow Groundwater: 1.24 < UAR < 1.46

DRC Agrees

• USGS No. 2 - continued

DRC Response - continued:

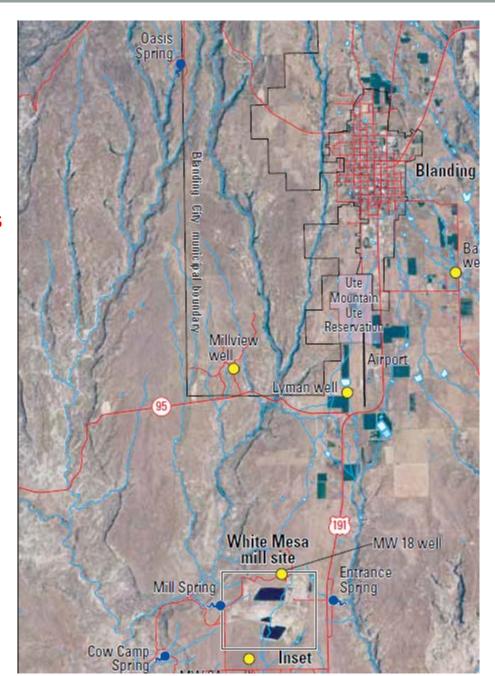
- 2. UAR Standardized Methods: alpha spectrometry
- 3. More water sources (besides Entrance Spring)
 - a) Other Springs (quarterly?)
 - Mill Spring (aka Westwater)
 - Cow Camp Spring (aka Cottonwood)
 - Ruin Spring
 - b) Tailings Wastewater (annual?)
 - c) Monitoring Wells (quarterly & semi-annual?)
 - d) Groundwater Permit general monitoring parameter

DRC Agrees

• USGS No. 2 - continued

DRC Response - continued:

- 3. Disagree for δ^{34} S, δ^{18} O, and δ^{2} H
 - a) Use UAR now instead (may consider others later)
 - b) Same as DRC concerns above (slide 6):
 - Few, if any, standardized methods
 - Limited number of laboratories USA (i.e., universities)
 - Mixed Signals problem (NWP)


DRC Agrees

- USGS No. 3
 - 1. Annual monitoring at Oasis Spring needed
 - Field Parameters, Major & Trace Elements
 - 2. Millview Well: Needs to be re-drilled
 - **Annual Sampling**

- 1. Oasis Spring & Millview Well = good location for background
- 2. Oasis Spring: Low flow (difficult to find in June, 2012)
- 3. Millview Well likely a more reliable water source
 - a) Re-drill Funding?
 - o BLM
 - o EPA
 - Tribe

DRC Agrees

- USGS No. 3
 - b) Millview Well ongoing DRC Sampling / Analysis
 ⇒ State funding possible

DRC Agrees

- USGS No. 4
 - - Every 3 years, same grid pattern (USGS)
 - Same analytes as USGS (~ 40)

DRC Response:

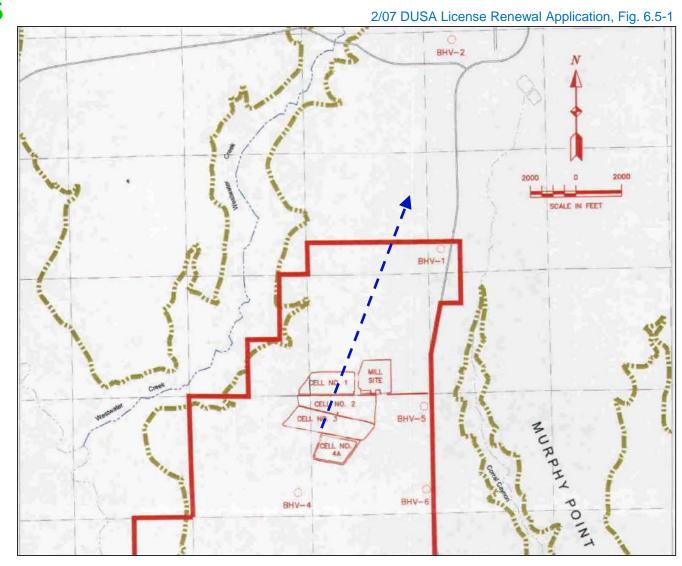
- 1. Leaf Resins: good for passive air monitoring
- 2. DUSA Environmental Monitoring Plan (EMP)
 - Plant Species: EMP not specific (now)
- 3. Opportunity to Improve Current DUSA EMP
 - a) Field / Lab Methods need adjustment; USGS equivalent?
 - b) Number of Analytes: USGS: > 40 tested

U ore related: 7 (Sb, As, Mo, Se, S, W, and U)

DRC Agrees

• USGS No. 4 - continued

- c) Sampling Locations \Longrightarrow Prevailing Wind: SSW (to NNE)
 - Both East and North?
 - Co-locate w/ High Volume Air (HVA) stations: new and existing
- 4. Sagebrush Sampling Frequency? need to coordinate with:
 - Soil sampling (currently annual), and
 - HVA monitoring (currently weekly, composited quarterly)
- 5. Data Interpretation: challenging
 - USGS Methods: no discrimination: dusts vs. internal plant tissue
 - Background Concentrations @ White Mesa: need additional study


DRC Agrees

- USGS No. 4
 - continued

DRC Response:

DUSA HVA Air Monitoring Stations

Prevailing
Wind Direction
(to NNE)

DRC Agrees

• USGS No. 4 - continued

DRC Response:

6. Monitoring Options / Alternatives:

Option 1: Start Sagebrush Monitoring – w/ USGS equivalent methods

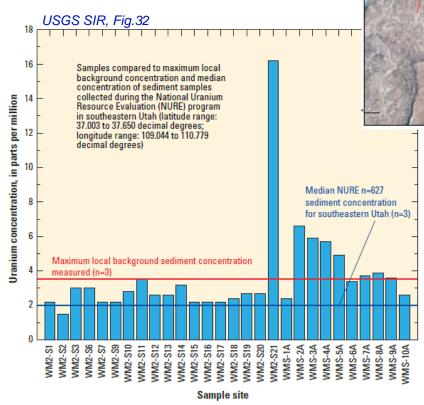
- Determine background concentrations @ White Mesa
- Annual sampling / reporting
- Compliance Limits

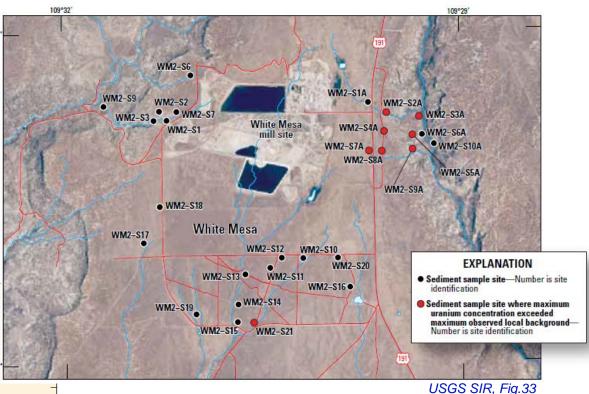
Option 2: Adjust Existing DUSA EMP

- Additional HVA stations
- Additional soil sampling stations

Option 3: No action

DRC Agrees


- <u>USGS No. 5</u>
 - 1. Consider dust emissions monitoring


 East of mill area

- 1. DRC agrees:
 - a) White Mesa Area: Soil Background for U < 3.6 ppm
 - b) Area East of Mill Site: U soil concentrations ~ 2 x background
- 2. Possible Explanations:
 - a) USGS Hypothesis: dust emissions and stormwater transfer
 - b) Alternative: historic ore truck traffic
- 3. Need to Test USGS Hypothesis: additional soil sampling
 - a) North of Cell 1 and Mill Area none done by USGS
 - b) DUSA Mega-ditch can also collect air emissions
 - c) USGS Soil Station WM2-S21 apparent hotspot

DRC Agrees

USGS No. 5 - continued

East of Mill Area:

7/10 samples > soil BG for U (3.6 ppm)

USGS Hypothesis:

Dust emissions & stormwater transport

Alternative: ore truck spills / emissions

DRC Agrees

• USGS No. 5 - continued

DRC Response:

4. Options / Alternatives:

Option 1: Start Improved Soil Monitoring - DUSA EMP

- Add Soil Monitoring Locations grid system or in dry washes
- Update Soil Background need > 30 samples
- Annual sampling / reporting

DRC Agrees

• USGS No. 5 - continued

DRC Response:

4. Options / Alternatives:

Option 1 – continued

- Compliance? \Longrightarrow 2 Approaches: Risk Assessment Models
 - NRC "Radium Benchmark Dose"
 - Basis = radioactive dose to humans
 - Assume 1,000 yr in-growth (decay products)
 - Multiple exposure scenarios / pathways
 - EPA Soil Screening Limits, SSL (Superfund Program)
 - Focus = kidney toxicity (human)
 - Multiple exposure scenarios
 - Near term risk

DRC Agrees

• USGS No. 5 - continued

EPA Superfund Human Health
Regional Risk Based Concentration Tables:
Soil Screening Level (SSL) Guidance
(developed by Oak Ridge National Laboratory)

Scenario	Risk	Exposure Route	Soil Concentration For Uranium (soluble salts)
Industrial Soil	Non-cancer	Ingestion	3,100 ppm
Residential Soil	Non-cancer	Ingestion	230 ppm
Tapwater	Non-cancer	Ingestion	47 ppm
Residential Soil	Non-cancer	Ingestion	14 ppm
to Groundwater			
(to protect			
drinking water			
MCL, 30 ug/l)			

from: http://www.epa.gov/reg3hwmd/risk/human/index.htm.

DRC Agrees

• USGS No. 5 - continued

DRC Response:

4. Options / Alternatives - continued

Option 2: Implement Additional HVA Monitoring – DUSA EMP

Add HVA Stations – to East and North (prevailing wind to NNE)

Option 3: Compliment HVA Monitoring with Sagebrush Sampling

- Add HVA Stations to East and North (prevailing wind to NNE)
- Add sagebrush sampling grid or ephemeral drainages

DRC Agrees

- USGS No. 7
 - 1. Additional soil sampling in 2 dry washes North of USGS study area (East of mill area)

- 1. DRC agrees:
 - Additional soil sampling should be done in these areas
 - 1-time basis, then decide if more (see USGS No. 5)

DRC Agrees

- USGS No. 9
 - 1. Future Monitoring data should be easily accessible, in database similar to USGS.

- 1. DRC agrees and will (starting August, 2012):
 - Post all 2012 DUSA monitoring reports on DRC website, including:
 - Quarterly Groundwater Monitoring
 - Quarterly Chloroform Corrective Action
 - Quarterly Nitrate Corrective Action
 - Semi-annual Environmental Monitoring
 - Annual Tailings Water Quality
 - Annual Seeps / Springs Water Quality
 - Post all future reports as soon as available
 - Maintain 2 year "running" collection on website

Conclusions

9 USGS Recommendations:

- DRC Agrees: Nos.
 - 1 Quarterly monitoring wells, springs continue
 - 2 Isotopic monitoring @ Entrance Spring UAR
 - 3 Groundwater monitoring @ Oasis Spring / Millview Well (?)
 - 4 Sagebrush sampling can be done (3 options)
 - 5 − Dust emissions monitoring − can be improved (3 options)
 - 7 Additional soil sampling in 2 dry washes, NE of mill site area
 - 9 Make future monitoring data available to public
- DRC Disagrees:
 - 6 Install new wells to North of Tribe's East and West Wells
- DRC Agrees and Disagrees: No. 8
 - 8 DUSA Water Monitoring Programs should add:
 - U isotopes Agree, UAR
 - Other isotopes (δ^{34} S, δ^{18} O, and δ^{2} H) Disagree

Thank you for your time

Comments / Suggestions?